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The objective of this paper is to present a methodology for developing and calibrating models of complex
reaction/transport systems. In particular, the complex network of biochemical reaction/transport processes
and their spatial organization make the development of a predictive model of a living cell a grand challenge
for the 21st century. However, advances in reaction/transport modeling and the exponentially growing databases
of genomic, proteomic, metabolic, and bioelectric data make cell modeling feasible, if these two elements
can be automatically integrated in an unbiased fashion. In this paper, we present a procedure to integrate data
with a new cell model, Karyote, that accounts for many of the physical processes needed to attain the goal
of predictive modeling. Our integration methodology is based on the use of information theory. The model
is integrated with a variety of types and qualities of experimental data using an objective error assessment
approach. Data that can be used in this approach include NMR, spectroscopy, microscopy, and electric
potentiometry. The approach is demonstrated on the well-stdajginosoma bruceiystem. A major obstacle

for the development of a predictive cell model is that the complexity of these systems makes it unlikely that
any model presently available will soon be complete in terms of the set of processes accounted for. Thus, one
is faced with the challenge of calibrating and running an incomplete model. We present a probability functional
method that allows the integration of experimental data and soft information such as choice of error measure,
a priori information, and physically motivated regularization to address the incompleteness challenge.

A. Introduction Figure 1b, we present a schematic flowchart for a computation
There has been a long standing interest in obtaining a that minimizes the error in model-predicted versus observed data

guantitative understanding of a living cell as a physicochemical to yield an Opt'm"_’ll set of mode_l parameters.
system. Barriers to accomplishing this goal are the hierarchical A comprehensive mathematical model has a large number
complexity of a cell's spatial organization and the underlying Of input parameters. For a cell, for example, there is the
network of reaction/transport processes, as well as the challengdnetabolic network reaction rate and equilibrium coefficients,
of calibrating the many parameters that appear in such a model.membrane perme_ablllty, etc. It is difficult to get some of these
The purpose of this paper is to present a methodology basedParameters experimentally. To use the variety of data types for
on the integration of modeling and data through information calibrating purposes as suggested in Figure 1a, a cell model
theory that can be used in this or other complex reaction/ Must predict values of these observables. Clearly, a genomic,
transport systems modeling efforts. There are a number of proteomic, metabolic, bioelectrical model is therefore required.
reasons for developing a predictive cell model, including Recently available models are Karydt@EPASI 37~ Mcell,*+°
understanding the origin and nature of cellular life, drug design/ E-Cell+*? and Virtual Cell}*"1# Karyote is a multicompart-
treatment optimization’ design of Opt|ma| microbes for envi- menta“zed, mUlUpIe time scale cell simulator that it is |dea”y
ronmental remediation and biochemical functions, stem cell suited for the implementation of our model/data integration
research, and predicting the emergence of drug-resistant bacterigtrategy. A brief description of Karyote is provided in section
and identifying potential drug targets. F. To illustrate the concept, the use of multidimensional
The complexity of the cellular reaction/transport network and SPectroscopy (MDS) data is suggested in Figure 1b wherein a
hierarchical internal spatial organization have been put forth as cell model predicted protein population can be used with rules
arguments against the feasibility, or indeed the desirability, for Of tryptic digestion and known properties of the digest fragments
developing a physicochemical model. However, considering the to develop a synthetic spectrum. This synthetic spectrum
potential benefits of such a model, we contend that the oppositeinformation is compared with an observed spectrum and an error
is the case. It is the immensity of this complex, hierarchical measure is calculated. Thus, to use protein spectra for calibra-
dynamical system that makes a model and computationaltion, a real model must predict the dynamic proteome. This
simulator a necessity if the benefits of predictability are ever to involves accounting for transcription and translation biopoly-
be obtained. For any procedure to be successful, it mustmerization, as well as amino acid and nucleotide synthesis. In
overcome the complexity of the system with the immensity of addition, the kinetics of posttranslational modification must be
the data set used. However, to be practical, the procedure musgccounted for in such a way that enzyme and ribosome creation/
be automatable. The approach outlined here has these featureglestruction are predicted by Karyofhe procedure is used to
Our overall approach is suggested Figure 1. In Figure 1a, we integrate the model with a variety of types and qualities of data
suggest that a variety of data types are to be integrated throughas suggested in Figure 1a. The fundamental quantity on which
information theory to develop and calibrate a cell model. In the formulation is based is the probability that the model is
correct and accurate once a set of assumptions are made. This
T Part of the special issue “Charles S. Parmenter Festschrift”. probability will be, in a sense, subjective in that while the model
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Figure 1. (a) Multiple types and qualities of data are integrated to automatically yield improvements in Karyote as new data becomes available.

(b) Integration of Karyote with a variety of data is used to compute the most probable values of the least well-constrained model parameters via
our information theory method. The method also yields the most probable time course of the concentrations of key chemical species of which the
mechanism of production or degradation are not known. The computation involves execution of a number of Karyote simulations that increase
linearly with the number of parameters to be calibrated and that can be run in parallel. The case for multidimensional spectroscopy is illustrated.

may have wider applicability; the uncertainty measure is PN e
established only for the class of phenomena of interest. This
viewpoint allows us to select measures of correctness of the
model that reflect our interest. For example, we might say that
accuracy would imply that errors in predicting relative intra-
cellular concentrations of a wide range of orders of magnitudes
(e.g., nanomolar to molar) must be similarly minimized. Our
probabilistic formulation allows us to estimate uncertainties in
all model predictions, and, as we shall show, allows us to ribosome
calibrate an incomplete model. =
Historically, most calibration problems are formulatedAss,
=y, wherey is a vector of observed quantities, ards the
vector of unknown model parameters. For a nonlinear model,
the matrix A usually depends om. Because the problem is
usually ill-posedA is ill-conditioned?!® The errorE = [IAX —
yll? is a quadratic measure to be minimized with respegt ¥
number of techniques have been used to regularize such systems.
Tikhonov’s approach is a commonly used technique in which Figure 2. Partial schematic Karyote flowchart showing how DNA
a small regularization parametgis introduced to modifiE to nucleotide sequence data is used in a self-consistent way to generate
IAX — yIR + glIXI2. However, the selection af significantly cell reagtlon/tranqurt dynamics b_y fgedback control and coupling of
affects the inversion. This technique is equivalent to the metabolic, proteomic, and genomic biochemistry.
minimization of E subjected to the constraittll? = f through
the use of the Lagrange multipliers. Minimization of the
modified error damps the large oscillations in the least-squares
solution. The LevenbergMarquardt technique uses a full
Newton approach and introduces another regularization param-
eter to the diagonal of the Jacobian ma#fi®! Once again, the

mRNA L
syntlle—sy <

Y

protein
synthesis

Y

post-transitional
protein process

protosome,

lysosome —>| amino acids nucleotides

enzymes

theory to construct a probability density function that can be
used to assess the uncertainty in calibrated parameters and
predicted cell behavior, use of different error measures to
improve the optimization technique, development of physically
motivated regularization techniques for problems in which the
choice of the regularization parameter is difficult, and the usual '€ast-well-known parameters are functions of space or time (as
practice is to change it as the simulation progresses to minimizetNiS 1S €quivalent to providing new information, in a novel
its effect?223In practice, multiple regularization techniques can appr(_)ach, we impose regularization cor_15tra|nts on the probabl_hty
be employed simultaneousiyApplications of the regularization ~ density functions), and use of a consistent approach to weigh
techniques are presented in Player e¥Rao et al2*Kytomaa e importance of different error measures.

and Weselaké? Torres et al2’ and Mendes and Ketf Mendes In this paper, we present results on the implementation of
and Kell compiled a review of optimization techniques applied our algorithm based on Karyote cell modél.2¢ A partial

to biological systems. They used the metabolic simulator Karyote flowchart is seen in Figure 2. Because an extensive
GEPASI along with a large number of optimization techniques set of processes is accounted for in Karyote, it is the type of
(such as steepest descent, truncated Newton, and genetitnodel that is ideally suited for the present approach. These
algorithm) to estimate five rate constants of the mechanism of technical challenges, presentation of our formulation, and
irreversible inhibition of HIV proteinase. In this paper, we application to the modeling dfrypanosoma bruceire presented
propose several improvements including use of information herein.



10556 J. Phys. Chem. A, Vol. 107, No. 49, 2003 Sayyed-Ahmad et al.

Here EX* is the average value oE®, and it is based on

) ) o ~ estimated experimental errors in the data and in the mathematical
Our information theory formalism is based on the construction g4 numerical model.

of the probability density for poorly constrained factors. The  grom the physics of a system and from our general experi-
three types of factors we account for are as follows: %pe  ence, we often know that time-dependent variables change
discrete parameters (e.g., stoichiometric coefficients specifying smoothly on a time interval smaller than some characteristic
the numbers of each molecular species participating in a reactionyjjme. Because data is often sparse, it is necessary to apply
or parameters determining protein sequence/function rules); tyP€homogenization constraints on the time dependence of the
B, continuous parameters (e.g., reaction rate coefficients, continuous variable<(t). For example, assume that estimates

B. Information Theory Model/Data Integration

membrane transport parameters, and equilibrium constants thal
can reside in a continuous range); typefunctions (e.g., the
time course of the concentration of chemical species of which
the enzymatic role is known but the mechanism of creation/
destruction is not known).

To estimate the most probable values of facdendB and
the time course of factoC, we introduce a method that
surmounts the limitations of regularization techniques used in
other approaches. First, we introduce the probabi(ly), (I
= A, B, or C). The entropyS of information theor® is a
measure of the overall uncertainty that we have about the value
of T'; it is defined in our formulatiorf§:3° via

S=—Jplnp (B.1)
r

In this expression,/ implies a sum over the discrete variables
A, an integration over the continuous parametBrsand a
functional integration ove€. Normalization of the probability
p[I'] implies

Jp=1
r

(B.2)

Experiments are divided intde groups labeledk =1, 2, ...,
Ne for each of which there is a set of observed data values,
0O®. For example O® could be the time course of a set of
intracellular constituent concentrations as they change in
response to an injected chemical disturbar@@), can be the
normal proteomeQ® can be the proteome of the virally infected
cell, andO® can be a set of membrane potentials in a rest state

or as they change in response to an electrode-imposed distur-

bance. Through Karyote, we compute the model predictions,
QM(T), that correspond taO®. Typically, theseQ® are
indirectly related td". Because Karyote predictions depend on
the choice of the parametel’s so doe€2®. The choice of the

error measures is discussed in the next section. In general, the

error measur&® should vanish as the difference between the
predictions and the observation goes to zero.

EXW—0 as Q®¥W—o® (B.3)

The entropy is proposed as a measure of our uncertainty in
the state of the system. Thus, for discrete parameters &ype
if T is known to be a particular valug, thenp = 1 forI" =
T'o and 0 otherwise, implying th& = 0. If all values ofT" are
equally likely, thenS takes on its largest value. Hence, to be
“objective”, p should be determined as the probability that
maximizesS constrained only with the available information.
Thus, we maximizé& subject to normalization (eq B.2) and the
estimated error in the available data. Among the latter are the
error conditions

%‘pE(k) = g0« (B.4)

based on known reactions suggest 4] varies on a second
time scale or longer not, for example, on a nanosecond scale.
Then we impose a constraint on the expected rate of change of
C(t):

i t 1 0C.\2 )
%pﬂ)f dté(a—t') =tX j=1,2,..N.  (B.5)

for the jth time-dependent parameteg;; the value of X
represents the value of the square of the rate of chang® of
averaged over the ensemble and the total timef the
experiment.N; is the number of time-dependent functions to
be estimated. In general, one might need to apply regularization
on the space dependence of some variabl2§). Such
constraints eliminate unphysical high-frequency content of the
solution. (e.g., spatial regularization of diffusion coefficient that
is known only at few spatial points). The constraint can be
expressed as

JSp [, dr %|vf)i|2 =W i=1,2..N, (B6)
r

Here Ns is the number of space-dependent functions to be
estimated. Introducing Lagrange multipligdis Aj, andIl;, we
find that thep that maximizesS subject to (egs B.2, B.4, B.5,
and B.6) takes the form

1k -
Inp=-InQ— EZHJQ d’r |VD,|* —
£

1Nt . Ne
=S A [ dtac/ot)® — eYM (B.7
2; [ dt(ac/ot) k;ﬁk [T (B.7)

The normalization coefficien® is given by

s, 1NSH f d®

3 EX - - H r

r 2; Ve
1k
E;Ajf;

By finding Lagrange multipliersfl, A;, andIT;), we construct
the most unbiased probability distribution of the model input
parameterd’.

_ VD, |2 -

N

dt(aC,/at)* — iﬂkE(k)[F]) (B.8)
k=

C. Data Types and Error Measures

The error measureS¥ of section B are a central element of
our information theory approach. It is our opinion that the choice
of error measure itself can be viewed as a type of information
that can be justifiably folded into the approach. For example,
suppose that from experience it is known that one error measure
is more sensitive to the calibration of a given parameter than
others. Alternatively, one error measure may emphasize one
subset of data (e.g., large values) versus another (e.g., small
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ones). Thus, a judiciously chosen error measure can reflect our(g) oot
knowledge of what is important in assessing the accuracy of
the model.

Cells often can be induced (e.g., by manipulating the culture ~ *%®[
medium) to remain in a steady state of substrate uptake and
product expulsion. Let the predicted steady-state concentrations

I ! I ' 1 N i N I ' i

S~
L)

0.006 |-
be denoted b:{/cip; i=1,2,..,N} foranN-component system, %
while the observed values;, of these quantities are assumed g
to be known. Let(x,y) be a positive function ok andy. Then [ 0004
one class of error measure is

E=h(cc) (C.1) o0
|
o R S . A N T

The challenge is to choose the formhik,y) that fits certain 0 *‘“Fomfg'!:fmspmf;ffmmlffjg; cose oy LBe0T
criteria that one may have on model accuracy. In our formula-
tion, these criteria are as follows is zero whenx = y and ) p 7T T
must be positive otherwise; for fixgd h must be a monotoni- -
cally increasing function ok as |x — y| increasesh should 120~

reflect any valuation one may have (e.g., all values are equally
important or the larger values are most important).

Specific examples of error measures for concentrations are
as follows:

Error (log(M)z)
8 38 8
S E——

E=Y |- (C.2)
IZ | (|

5
T

E=Y(nc—Inc)’ (C.3) ol

0 n | L | A | " | L | L | L
o] 3e-08 6c-08 9e-08 1.2e-07 1.5e-07 1.8¢-07
2 Forward Transport Parameter for Glucose 1/(Lsec)

G-
Z (C.49) Figure 3. Different error measures show different response as a
T 0 function of forward transport coefficient for glucose between a
glycosome and the cytosol ifi. bruceimodel using Karyote(a) the

o\ 2 simple error measure (eq C.5) with® = 1 is biased to large
Z i i concentrations; (b) the log-difference error (eq C.3) more equally weighs
I

E

E (C.5) the full range of concentration values. It shows a distinct global

(o minimum.

where ¢° is a weighting factor (e.g., the uncertainty in the With similar reactions to be®, then letF® be given by
observed data).

The above error measures have different characteristics. In NG
our studies steady-state concentrations range over several orders FW = h(yi(k),y‘/i(k)) (D.1)
of magnitude that the choice ¢ix,y) = [In x — In y]2 is a i=
good measure to make use of all measured data. Thus while
andy can vary over several orders of magnitudes, this measureFrom a database of similar reactions, one may gather statistical
treats all species on a relatively equal footing. Our study information, denoting the expected valuefP by F*. We
indicates that the simple measure € y)? has rather poor ~ impose the conditions
behavior (see Figure 3a). The steady-state concentrations were
predicted by Karyote foil. bruceicell.?” When the simple S pF® = 0= (D.2)
guadratic error measure was used, error was weakly dependent r
on the rate coefficient, while the use of eq C.3 resulted in a
well-defined minimum. In this sense, knowledge of the optimal This allows one to determine thé, Lagrange multipliers that

error measure is a type of information. are introduced in the entropy maximization. To illustrate the
essence of this approach, consider the following problem with
D. A Priori Information one type of error. The maximization of entropy subject to

normalization (eq B.2) and error constraint (eqs B.4 and D.2)

Considering the number of model parameters that are poorlyyielols

constrained, the above procedure may not be sufficient to
determine them when only a small amount of data is available.

Ny
Thus, we suggest approaches that will guarantee solubility In o= 0)

o : . np=-InQ—-BE— Y AF D.3
based on qualitative knowledge. First, consider a set of expected p Q-4 &' (©-3)
errorsF®, k = 1, 2, ...,N,. Associated with one of thé&l
expected errors is a group Y model parameterg;® {y%, where 8 and 4; are Lagrange multipliers. IF is taken as a
y¥, ..., y%}, for which we have experience. For example, if quadratic function, it implies a Gaussian envelope that helps to

they are rate coefficients that we have estimated from experiencestabilize the numerical solution.
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Next, we introduce an “irrelevance” constraint. In this case,

] I [ ¥ I t | . 1 | i I |
we consider certain parameter values to be irrelevant once they  *[) e W
reach an asymptotic range. For example, consider the reactior  ,, '_'I o %&Q:E il
» 2000 sec.

X+Y—Z (D.4) ] a
of rate coefficiengg and rate lang(KXY — Z). As q — o, then g s} ]
to lowest orde KXY = Z and the rate becomes independent of 5 i
g. To show this, expanX, Y,andZ in a Taylor series i < il oD -]
After a short transition period, the system evolves to the = 14-"‘\-—' S e -
equilibrium manifoldQX,Yo = Zo, whereX = Xo + q71Xy, + al "‘ : 1
.... With this, an error measure will become independery of oy _ it ]
beyond a crossover value, and hened&ecomes independent wg % i 55 P N
of g in that asymptotic range. LeM andW be the forward - Wi pRE il
and reverse rates of tién reaction. Then as the associated rate T T T I
coefficient q exceeds the CI'OSSOVGM ~ V\I{ Hence, the Slow Reaction Coefficient for Phosphofructo Kinase reaction (Lsec)
quantity Figure 4. The error topography of the error measure depends on

simulation time. The longer the simulation time is, the deeper are the
\N{ _ \M minim_a that we get for that specific parameter, as expected because
E=— (D.5) experiments were done at steady-state concentrations.
W+ W
provides a measure of proximity to the asymptotic limit. If there (E.3)
are Ngoss Of theseq (I = 1, 2, ..., Neos9 then consider the
measure
and
Neros: 1 ql 2
G= Z —+ |- (D.6) N
12 \a B : (E.4)

T 2E -E)

The explicit g/q term accounts for the fact that the rate

coefficients are not expected to fall too far below typical values, hence

0., and certainly not below zero. Then we impose the constant . T

p(X) ~ pr exp{ —(1)BAXH| o AX} (E.5)

J0G = Ngosd (D.7)

The/; are the eigenvalues bf;j(6°E/(9x0x)), the Hessian matrix

of E calculated at the minimurk,, of E. E* is the expected

value of the error evaluated from experimental and model

uncertainties. Caution must be used for adopting quadratic

approximation (see Figure 5). Expected values can be found
The key to the implementation of our information theory using the probability distribution and the Hessian matrix of the

method is an efficient numerical algorithm for calibrating the output predictions(x) calculated at the most probable value

whereg is a value of a typica.fg,’2 beyond which crossover is
expected (say 16).

E. Numerical Approach

continuous parameteBsand the discretized functior® which of the parameters.
together constitute a set b parameters denoted € xi, X,
ceey XNp)- _ (B —Ep) Ny
1. Single Data SetFor one error type (and associated data P=P(xy) + - (E.6)
set), the results of section B imply N, S 4
Inp=—InQ — BE(X) (E.1) Also one can calculate the uncertainty in the predictions using
the output response vector and the Hessian matrix of the model
The most probable parameter values arepgt the global prediction P(x) calculated at the most probable value of the
maximum ofp. This occurs aky, the global minimum o, parameters
that is, at the solution of
- | , 2E —E) i 3E —E)° Ny’
—=0, i=1..,N, (E.2) op=—H Y+ — y — —
o N, “14 sz i,1=1ii/1j
For metabolic kinetic networks, as an illustrative example, (E* — E)° Moy;i)2
steady-state concentration measurements are used to construct — Z— (E.7)
an error measure. Steady-state probing is crucial to determine N, =174

the error response of the model with respect to steady-state
concentrations. The simulation time is essential to determine Herey; are the diagonal elements of the transformed Hessian
the most probable values of the parameters (see Figure 4). matrix of P calculated at the minimum d&. «; = (9P/dx;)? are

By expandinge around the most probable valg of x and the diagonal elements of the tensor product of the prediction
dropping cubic and higher order terms in the deviation from output response vectodP/dx, and its transpose calculated at
Xm, We get (see Appendix I) the minimum ofE.
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Figure 5. The dashed curve is a Gaussian approximation to the
probability distribution constructed using a quadratic expansion of In
p around the most probable value. While agreement is good in this

case, the Gaussian approximation is not always appropriate.

2. Multiple Data Sets. Here, we maximize the entropy to
find the probability of the model parametesig] with respect
to p(x) and subject to normalization and eq B.4. Introducing
Lagrange multipliers;-In Q, andpx, we maximize the auxiliary

function to obtain

Ne
Inp(x) =-InQ - Zﬁ(k)E<k>(x) (E-8)
k=

J. Phys. Chem. A, Vol. 107, No. 49, 200B0559

whereX; = G,VE|x—, 0; = G| J¥G,, G, are the eigenvectors
of the total error (eq E.9) Hessian matrix evaluated at X,
andJ¥ is the Hessian matrix of thkth error type.

Denote eqs E.10 and E.11 B, i =1, 2, ...,Np, Np+ 1, ...,
Np + Ne} andp by xn+1, ..., Xny+n, The firstNy equations follow
from error minimization, while the remainder follow from the
error constraints. Note that we do not need to solve Qor
because we impose normalization on eq E.12 to get an
approximate normalization constant. The above system of
nonlinear equations can be written as

f(x)=0 (E.15)

We solve eq E.15 using the NewtoRaphson method
starting with an initial guess and constructing the Jacobian
matrix, which represents the sensitivity of the equations to
changes in the variables. The evaluation of the Jacobian matrix
and the error minimization equations cannot be obtained
analytically for the complex reaction/transport systems of interest
here. While automated differentiated methods (ADIFOR) can
be used to develop accurate expressions, such an approach is
memory intensive and not easily parallelized. However, a
forward difference scheme is found to be easily coded and
parallelized. We have implemented a finite-parameter perturba-
tion method to calculate the error response and the Jacobian
(for one error type) as follows:

9E _ E(x+hd) — EX)

As in the single error measure case, we find the most probable,p, g

value ofx by minimizing the total error oE"

Ne
E'= kzlﬁ(k)E(k)(X) (E.9)

subject to normalization and error constraints (eq B.4). We thus

solveNp + Ne + 1 equations

ET M HE®

a_xizk: ﬁ(k)a—Xizo, i=1,...,Np (ElO)
EX¥X)p(x,8) dx — E¥* =0, k=1,2,..N, (E.11)
S .
and
So(x,B)dx—1=0 (E.12)

x> h (E.16)
’E o
9%
E(x + h& + hg) — E(x + h&) — E(x + h@) + E(x)
hhy '
(E.17)

in which & is a unit vector in théth direction andh is a small
perturbation. For multiple error types, the above will be the
upper right part of the Jacobian; the rest can be calculated in
the same way by perturbing the Lagrange multipliers. The
number of model runs needed to calculate the Jacobiad,is (

+ 1) + Np(Np + 1)/2. This can be reduced tdl{ + 1) if one

uses NewtorrGauss or a steepest descent gradient scheme. One
can use a hybrid method (e.qg., starting with a steepest descent
scheme and after a few iterations applying Newt&aphson

or Newton—-Gauss (to get a quadratic convergence). Once the

Using a Metropolis-Monte Carlo algorithm to evaluate eqs E.11 Jacobian is constructed, we solve

and E.12, one needs thousands of model runs to evaluate each
integral. However, with the use of a quadratic truncatiofeof
the computational time is reduced dramatically. This allows us

to compute these integrals analytically as a functiois.oBy
doing so, we get (see Appendix II)

1 s N [A(x.B) X(%.B) e
— R X, = expg — .
o TP A=, 22,(x.8)
and
1N % (4(xB) + XA%B)
E¥(x B) + - 6.) =e® (E.14
X.B) Zgg 1) o) (E.14)

IAX, = —f (E.18)

an

Xnt1 = Xy + wAZn (E-lg)
hereJ; = ofi/ox for Newton—Raphson method} for Newton—
Gauss is obtained by dropping of predictions’ second derivatives
terms in the NewtorrRaphson Jacobiam is obtained using a
line search along the direction of NewteRaphson or Newton
Gauss direction. We update the solution by iteratively applying
this procedure until the elements bbecome smaller than a
prescribed tolerance. For insufficient or poor quality data or a
poor choice of error measure, the scheme will not converge as
expected. In summary, this iterative procedure is much more
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efficient than Monte Carlo methods because one solves for the
most probable value of the model parameters directly. The
algorithm is parallelizable because the many simulations of the
model that are required can be run simultaneously; the number

(a)

1.0

Sayyed-Ahmad et al.

0.8

of simulations required scales linearly with the number of
parameters to be determined for a Newt@unuss optimization
technique.

3. Time Regularization Constraints. We now give more
details on our strategy for probability functional calculations.
We return to problems involving the three types of factors to
be calibrated” = (A,B,Q as in section B. Introducing Lagrange
multipliers 8 andA;, we find that thep that maximizesS subject
to constraints (eqs B.2, B.4, and B.5) takes the form

A -
np=-INQ—-=FA [dt(@C/at)?— S BEXT) (E.20)
2; J./(; i k; K

The factorQ is a constant to be determined by imposing
normalization (eq B.2). The most probable valuelofs that
which maximizesp. For typeA parameters, this follows from
a discrete search; f@ = (B, By, ...,By,) andC = (Cq, Cy, ...,
Cny), one must solve

Neﬁ e 0, j=1,2,...N (E.21)
—=0, j=1,2,.., .
k; k 9B, b
and
A 2Cj+ Neﬁ 6E(k)—0 ji=1,2,...N, (E.22)
j e k; k 5Cj v 1 4y el .

This is a functional differential equation that has similarities in
its behavior to a steady-state diffusion equation in the time
dimensiont. The functional derivative8E®/0C; measure the
degree to whickE® changes when the form of the function
Ci(t) changes by an infinitesimal amount. As theparameters
get larger,C becomes a smoother function of time. The values
of the 3 and A parameters are determined in our procedure via
imposition of the conditions eqs B.4 and B.5. We solve the
above equations for the most probable value®\0B, andC
numerically. We use a finite difference scheme so that the
homogenization constraints take the form

1 , 1 (Cj,i+1 — G2
— [ dt (aC/ot)"=—H) | ——| At E.23
5 Jydt (ac/at) ZZ At (E.23)
Equation E.22 can be written as
Cj,i+l - zcj,i + Cj,i—l Ne 9g®
AtA + Z‘ﬂk— =0,
At = 3Cj,i
=12, ...N =12 ..N (E24)

where At is the spacing between the discretized value€of
andN,; is the number of discretization intervals for spegies
Newton—Raphson method is used for solving the coupled
equations (E.21, E.24).

A simple reaction model illustrates this approach. The
model involves three species, X, Y, and C, which are taken

0.6 \

0.4

0.2

0.0

time

1.0

(b)

0.8
0.6
0.4

0.2

0.0

time
Figure 6. (a) Comparison of the time course Gft) as known (bold)
and predicted with and without regularization (dashed and solid line).
To the 41 data points used, a random error of 0.3% was added to
determine the effect of experimental data uncertainty on the evaluation
of C(t). In the absence of regularization, the high-frequency oscillations
are unacceptably large. (b) Even when the level of noise is increased
significantly (2% and 3% for thin solid and dashed lines, respectively),
we obtain satisfactory results.

to participate in the reactions

X+Y—2X

2X — products
2Y — products

C + X — products

C+Y—2Y (E.25)

While all the reactions affecting X and Y are assumed to be
known, those affecting the catalyst C are not. Consider now
the challenge of determining the time course of the catalyst
concentrationCC(t), given limited or noisy data oKX(t) at a set
of discrete times, given th& is known att = 0 and the final
time t; (5 min). We assumed

C(t) = g sVl (E.26)
and then generatex(t) via the numerical solution of the mass
action rate laws for the mechanism (eq E.25); this was taken as
the observed data, and various levels of noise were added to
evaluate the effect of uncertainty in the data. Figure 6 shows a
comparison of results for various levels of noise in the
experimental data. Even when there is a large amount of data,
solution without regularization is vulnerable to noise in the
experimental data. The physically motivated homogenization
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1.0

where A% is the shared boundary surface area separating
compartmentst anda’, J*“ is the net flux of speciesfrom a
toa’, ¢ is the concentration of speciem compartment, N,
Ns, andN; are the number of compartments, chemical species,

slow

and fast reactions, respectivel,;*°" is the net reaction rate

0.8 1

0-6 1 for slow reactions involved with chemical specjes compart-
© menta, V¢ is the volume of compartment, V\Iﬁ'fa“is the rate
0.4 1 of reactionk in compartmenta, vifESt is the stoichiometric
coefficient for species in reactionk in compartmentr, ande
0.2 is the ratio of the short to long characteristic time.

We calibrate the parameters listed in Table 1 with available
experimental steady-state concentrations. As seen in Tables 1
0.0 ' ' ' ' and 2, the values of the parameters developed by our procedure
give lower error than those obtained by Navid and Ortoleva,
which themselves give a lower error than those of Bakker
et al.

time
Figure 7. The rms deviation ofC(t) (dashed lines) showing the
uncertainty of the results when the expected error is 0.01.

(eq B.5) increases the allowable noise in the experimental dataG- €onclusions
by an order of magnitude. Because this method is based on an The overall goal of this work is to develop a natural

objective probability analysis, it provides an estimate of jntegration of modeling and laboratory approaches. Because
uncertainty in the predictions (e.g., see Figure 7). The above there are uncertainties in both, the natural framework for this
approach yields accurate results even with limited and noisy integration is information theory (i.e., probability theory). We
data, a situation typical for data on cellular and other complex haye established the relationship between the completeness of
systems. Imposing small values of (variable name of eq B.5) the model and of the experimental data set. For example, an
decreases the oscillatory behavior Gf and narrows the  extensive data set can be used to establish relationships among
probability distribution as well. Therefore, if a species is known yariables that are not included in the physics and chemistry of
to have a smooth time course, use of this information via eq the model; thus while reaction mechanism for the creation/
B.5 leads to a narrow probability distribution Gf destruction of one chemical species may not be known, our
formulation shows how experimental data can be used to
construct the most probable time course of concentration of this

An extensive study off. bruceiwas done by Visser and  SPE€cI€s.

Opperdoe$! Steady-state concentrations of different metabolites ~ The information theory framework allows for the inclusion
were measured using a variety of analytical techniques such asof qualitative data/physical intuition (i.e., soft data) in a variety
high-pressure liquid and ion-exchange chromatography. Elec- 0f ways. Experience gained in determining the most sensitive
trophoresis is used for protein and enzyme concentrations.error measure for given types of model parameters and of data
Bakker et aB2 and Navid and Ortolev studied T. brucei can be considered as information that is naturally integrated in
glycolysis. Navid and Ortoleva simulated glycolysis using a ©our formulation. Qualitative information such as upper and lower
metabolic network that consists of 28 fast (equilibrium) and 11 limits on the time scale of processes can be naturally introduced
slow reactions. The system consists of 59 chemical species inVia our regularization approach. The numerical computations
three compartments (mitochondrion, glycosome, and cytoplasm).can be stabilized by incorporating our knowledge of asymptotic

In Karyote, the dynamics of the metabolite concentrations are Pehavior of the reaction system (e.g., when the rate coefficient
obtained by solviny for a reversible reaction is beyond a certain value, then that

reaction is at equilibrium, and therefore, predictions of the

F. Application to T. brucei

dc* N N (et model become insensitive to the value of parameter used).
Va_' L WCR VaRip,sIow LN fast k Finally, experience gained on reaction mechanisms an_alogous
dt 0;1 : kZ‘ L to those in the modell pf |r_1ter.est.can.be used.to. .gwde the
] structure of the probability distribution via an a priori informa-
i=1,2,..N; (F.1) tion approach.

TABLE 1: List of Parameters Calibrated for the T. brucei Glycolysis ModeP

parameter type reaction initial estimate calibrated value
slow reaction rate coefficient hexokinase 0.0658)s 0.0872 (s
slow reaction rate coefficient glycerol-3-phosphate dehydrogenase 0.0395 (s 0.9040 (sY)
slow reaction rate coefficient GAP dehydrogenase 57.99 (s 81.470 (sY)
slow reaction rate coefficient GAP dehydrogenase 57.99 (s 25.150 (s?)
slow reaction rate coefficient phosphofructokinase 0.32) (s 0.0912 (sY)
slow reaction rate coefficient phosphoglycerate kinase 0.125 (s 0.0263 (sY)
slow reaction rate coefficient pyruvate kinase 0.0743)(s 2.205 (sY)
slow reaction rate coefficient glycerol kinase 1.00Y4s 0.109 (sY)
fast reaction equilibrium constant phosphoglycerate mutase 0.187 (s 0.128 (s9)
fast reaction equilibrium constant enolase 6.70)(s 1.511 (s?Y)
forward transport coefficient glycerol-3-phosphate x4075(L"ts™) 4.001x 10°5(L"%s™})
forward transport coefficient pyruvate X 1079 (L"s™) 4.8x 107° gL*l-s*l)

forward transport coefficient dihydroxy-acetone-phosphate x 1075 (L~s™) 9.76x 107°(L"%s™)

a Fast reactions are considered to be at equilibrium; thus, only the equilibrium constants were calibrated. For slow (finite rate) reactions, rate
coefficients were calibrated.
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TABLE 2: Comparison of Calculated and Measured Steady-State Metabolite Concentrations for Glycolysis under Aerobic
Conditions in T. bruce?

Karyote
calibrated Bakker et al.
exptl concn concn concn concn
(aerobic) (aerobic) % (aerobic) % (aerobic) %
species (mM) (mM)® erroP (mM) error (mM) error
G6P 4.4 1.0 77 4.40 0 0.44 90
FBP 2.4 0.55 77 241 1 0.13 95
F6P 1.9 1.4 26 1.93 2 26 1268
GAP 0.47 0.25 46 0.28 40 0.074 84
DHAP(g/c) 2.6 3.8 46 4.26 64 1.6 38
1-3-BPG 0.77 0.2 74 0.74 4 0.028 96
3PG(g/c) 4.8 1.7 65 4.98 4 0.68 86
2PG 0.59 0.3 49 0.60 2 0.13 78
PEP 0.85 2.0 135 0.91 7 0.85 0
pyruvate 21 21.6 3 20.7 1 21 0
nGly-3-P(g/c) 2 0.4 80 1.68 16 1.1 45

a|n column two are the measured concentrations by Visser and Oppétdnaslumn three are the results for Karyote simulation of the same
system. In column seven are the results of a similar simulation by Bakker’®Kakyote's results have smaller average margins of error in
comparison to Bakker’s results. Improvement due to the use of Karyote is seen by comparing column three and seven. Improvement due to a better

calibration is seen by comparing column three and five. The designations g and ¢ denote glycosomal and cytosolic concentrations, respectively.
b Navid and Ortoleva, 2002.

Our methodology allows for the construction of the full parameters set, Clearly Xy is maximizing the probability
probability distribution. However, these computations can be distribution because Inp is a monotonic function ofp.
carried out most efficiently when a Gaussian approximation is  Define
used to construct the probability density for the least known T
factors. This probability in the Gaussian approximation can be F(_ﬁAX HElx—xmAX) q

Pm= | €x X

used to calculate the probability distribution for model predic- > (1.2)
tions, the latter not necessarily Gaussian even though the former
was. As a model, prediction is in general a complex nonlinear hence,
function of the unknown parameters. 1
The methodology allows for the objective integration of Inp~Inp,+ Ax'VIn Pli=x, T EAXTH,np|X:XmAx

multiple data sets of various types and quality (e.g., NMR, mass
spectroscopy, microelectrode). To take full advantage of such 1
a spectrum of data, a model of a complex system, like a cell, ~In py + EAXTHInp|x:xmAX (1-3)
must be sufficiently comprehensive to utilize a broad range of
data types. For example, the model should be based on a largel his approximation is always valid when we have a narrow
network of metabolic reactions to use data on small molecules Probability distribution where the quadratic term is the dominant
and should have proteomic and genomic Components to usefactor. For multimodal probablllty distribution, when one of the
mass spectroscopy data on tryptic digest of proteins. A key link maxima is much larger than the others, it is legitimate to ignore
in the utilization of a variety of experimental data types is the the latter. This allows us to give a complete description of the
development of modules that transform the output of the model Probability using few parameters (i.e., averages and variances).
(concentrations of chemical species, populations of various However, the idea of best estimate and confidence intervals
proteins) into the experimentally measured quantities (e.g., NMR Would be irrelevant when the multimodal probability density
and mass spectroscopy). Thus the development of the physicahas comparable maxima.
models and numerical algorithms needed for the translaton Now, we have
modules is an important next step in the development of our T
approach. “BAX Heloy AX

p(X) ~ pryeXP 5 (14)
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He=G'AG (1.6)
Appendix 1. One Error Type Approximation Because the Hessian matrix of the error is positive definite
Entropy maximization for one error type yields aroundxm,, one can evaluate the quadratic integration in eq 1.4

analytically. By doing so, we find
Inp=—InQ — BE(X) (1.2)

whereQ is a normalization factor anglis a Lagrange multiplier.
We expand Inp around the most probable values of the

(1.7)
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where N, is the number of model parametefsis evaluated

J. Phys. Chem. A, Vol. 107, No. 49, 200B0563

With use of eqgs 1.13 and 1.17, the uncertaiotf = [P(x)2]

using the error constraint (eq B.4) and the quadratic expansion— [P(x)[ in a model predictiorP is found to be

of E. With the use of the transformatioAx = GTs, the
constraint integral
f { E + %AXTH EAX} p(x) dx ~ E* (1.8)

can be transformed to

E, +—f J7 ds,... dsN /15 exp{—— As)
= (1.9)

Evaluating the above integral yields

,1 =FE* (1.10)
2|— ’V (B)’) V

And hence, we get

N,

B= T = (1.11)

Ev
Substitutings from eq I.11 into eq 1.7 yields

— (1.12)
47(E* — E,)

Similarly we can calculate the expected value of a model
predictable outpuP to be

—En) Ny

P:P(Xm)+ I:Z

(1.13)
p

wherey; are the diagonal elements of the transforRedessian
matrix ¥ = G'HpG. En, is the error evaluated aty,. The
uncertainty in the predictions can be deduced from the prob-
ability distribution of the input parameters. We expand a
predictable quantit? around the most probable values of model
parameters. Taylor expansion Bfgives

LAxTH SAX

P(x) ~ >

P(x,) + AX'VP + (1.14)
and

P(x)* & P(x,)> + AX' VPVPTAX 4+ P(x,)AX"HpAX +

%AXTHPAXAXTHPAX + ... (1.15)
Now,
P(x)’0= py [ P(X)?e 75 dx (1.16)
can be approximated by
2P(x)(E* — Ep) ™ [ Ki;
P(x)° + —+ +
N, S\4 AP,
3(E* —E)* M yl
— (1.17)
sz L=

wherek = GVPVPTGT.

2(E*

B £ !

N |:A

2(E* —
+

ol= Z— (1.18)

p i sz =144

Appendix Il. Multiple Error Types Approximation

For multiple error types, we need to solve the highly nonlinear
constraints equations

9N Q _ wr
+EY =0, k=1,2,.
Py

whereNg is the number of error types ar@ is the partition
function for multiple error types, which can be evaluated by

(I1.1)

Ne
Q= [expt- ZﬁkE(k)) dx (11.2)
k=

Denote the integration over parameters spacélbythen the
Jacobian of the above nonlinear system (eq 11.1) is found to be

PINQ _ 0ei O i —

PP = E'E00- EOmEYD ij=1,2,..N, (I.3)
which reduces to

FINQ_ —ieh) DR .

P =EEV- EVEY ij=1,2,..N, (ll.4)
or

& FInQ _ mE(I) E(i)*)(E(j)_ EG)*)D =1,2,..,N

Pop, (11.5)

Now, consider an arbitrarg = 0,

BTHE — EV)(E - ED)B=p"E - EY)'(E - EV)B0
(11.6)
which implies

BTIE — ENBIPO> 0 (1.7)

that is, the Jacobian of the nonlinear system eq 1.1 is positive
definite. This is a necessary condition for having a unique
solution of eq Il.1. Another necessary condition for having a
solution is
EY -—e¥y>0, k=1,2,...N, (11.8)

However, the above nonlinear system and the Jacobian evalu-
ations are computationally expensive. Using Monte Carlo
methods to calculate the partition functi@hneeds thousands
of model runs. If quadratic terms are dominant in the error
functions, then a Gaussian approach for the probability distribu-
tion can be taken as follows.

DenoteE = Z 1 BrEY; then the quadratic expansion of In
p around a reference pouxt yields

Inp~Inp, — AX"“VE|,_, — %AXTJ|X=XrAx (1.9)
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where

Ne
VE = Zﬁ(k)VE(k) (11.10)
k=

and
| Neﬁ Py
ij kZ‘ (Y 8Xi3Xj
Substituting eq 11.8 into normalization, we get

oS ex;{—AxT-VE

The spectral decomposition & Hessian matrix] implies

(I1.11)

1.7
2AXJ

X=X,

szrAx) dx=1 (II.12)

J=G"IG (1.13)
and
IGl=1 (1.14)
We transform the integration variables using
Ax=G's, (11.15)
and
X = GVE|,_, (11.16)
Equation 11.12 then becomes
N 1
prD I exp{—Xis - Ezisf) ds=1 (.17
which can be simplified to
Moo ox Xi2
prD l—iex 5. =1 (1.18)
Therefore
1 N A4(B) X(p)
5%pr= | o ex 2.0 (1.19)

One can use the partition functio to approximate the
constraints (eq Il.1) and the Jacobian (eq I1.4) using a forward
difference scheme. Similarly, we can expd##(x) aroundx,

EX¥x) = E¥(x) + AX'VE®|,_, + %AXTJ(kHX:Xr Ax (11.20)
Substituting in eq B.4, we get

dx ~ E®"
(11.21)

NG

(k) —AxT.
o fE exp( AX"-VE 5

x=x, Ax)

X=X

This reduces to

Sayyed-Ahmad et al.

1 *
expg —X/s— ESTAS ds~ E®" (11.22)

Now let @, = G J¥G,; then the preceding becomes

which reduces to

é

af ®
EYx,) 3 D
X 2

exg — — pzp@jk(il_k—le)’_pl Zirex X—l =EY
i] |IF1k= lj - A #
(11.24)
that is,
N \(/‘Lj(xr,ﬁ)—Fij(Xr'ﬂ))_E(k)* E¥x.f) (11.25)
251 = ¥ /1J.2(Xr,ﬂ) r, |

which is an equivalent approximation to eq II.1.
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