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The objective of this paper is to present a methodology for developing and calibrating models of complex
reaction/transport systems. In particular, the complex network of biochemical reaction/transport processes
and their spatial organization make the development of a predictive model of a living cell a grand challenge
for the 21st century. However, advances in reaction/transport modeling and the exponentially growing databases
of genomic, proteomic, metabolic, and bioelectric data make cell modeling feasible, if these two elements
can be automatically integrated in an unbiased fashion. In this paper, we present a procedure to integrate data
with a new cell model, Karyote, that accounts for many of the physical processes needed to attain the goal
of predictive modeling. Our integration methodology is based on the use of information theory. The model
is integrated with a variety of types and qualities of experimental data using an objective error assessment
approach. Data that can be used in this approach include NMR, spectroscopy, microscopy, and electric
potentiometry. The approach is demonstrated on the well-studiedTrypanosoma bruceisystem. A major obstacle
for the development of a predictive cell model is that the complexity of these systems makes it unlikely that
any model presently available will soon be complete in terms of the set of processes accounted for. Thus, one
is faced with the challenge of calibrating and running an incomplete model. We present a probability functional
method that allows the integration of experimental data and soft information such as choice of error measure,
a priori information, and physically motivated regularization to address the incompleteness challenge.

A. Introduction

There has been a long standing interest in obtaining a
quantitative understanding of a living cell as a physicochemical
system. Barriers to accomplishing this goal are the hierarchical
complexity of a cell’s spatial organization and the underlying
network of reaction/transport processes, as well as the challenge
of calibrating the many parameters that appear in such a model.
The purpose of this paper is to present a methodology based
on the integration of modeling and data through information
theory that can be used in this or other complex reaction/
transport systems modeling efforts. There are a number of
reasons for developing a predictive cell model, including
understanding the origin and nature of cellular life, drug design/
treatment optimization, design of optimal microbes for envi-
ronmental remediation and biochemical functions, stem cell
research, and predicting the emergence of drug-resistant bacteria
and identifying potential drug targets.

The complexity of the cellular reaction/transport network and
hierarchical internal spatial organization have been put forth as
arguments against the feasibility, or indeed the desirability, for
developing a physicochemical model. However, considering the
potential benefits of such a model, we contend that the opposite
is the case. It is the immensity of this complex, hierarchical
dynamical system that makes a model and computational
simulator a necessity if the benefits of predictability are ever to
be obtained. For any procedure to be successful, it must
overcome the complexity of the system with the immensity of
the data set used. However, to be practical, the procedure must
be automatable. The approach outlined here has these features.
Our overall approach is suggested Figure 1. In Figure 1a, we
suggest that a variety of data types are to be integrated through
information theory to develop and calibrate a cell model. In

Figure 1b, we present a schematic flowchart for a computation
that minimizes the error in model-predicted versus observed data
to yield an optimal set of model parameters.

A comprehensive mathematical model has a large number
of input parameters. For a cell, for example, there is the
metabolic network reaction rate and equilibrium coefficients,
membrane permeability, etc. It is difficult to get some of these
parameters experimentally. To use the variety of data types for
calibrating purposes as suggested in Figure 1a, a cell model
must predict values of these observables. Clearly, a genomic,
proteomic, metabolic, bioelectrical model is therefore required.
Recently available models are Karyote,1 GEPASI 3,2-8 Mcell,9,10

E-Cell,11,12 and Virtual Cell.13-18 Karyote is a multicompart-
mentalized, multiple time scale cell simulator that it is ideally
suited for the implementation of our model/data integration
strategy. A brief description of Karyote is provided in section
F. To illustrate the concept, the use of multidimensional
spectroscopy (MDS) data is suggested in Figure 1b wherein a
cell model predicted protein population can be used with rules
of tryptic digestion and known properties of the digest fragments
to develop a synthetic spectrum. This synthetic spectrum
information is compared with an observed spectrum and an error
measure is calculated. Thus, to use protein spectra for calibra-
tion, a real model must predict the dynamic proteome. This
involves accounting for transcription and translation biopoly-
merization, as well as amino acid and nucleotide synthesis. In
addition, the kinetics of posttranslational modification must be
accounted for in such a way that enzyme and ribosome creation/
destruction are predicted by Karyote. The procedure is used to
integrate the model with a variety of types and qualities of data
as suggested in Figure 1a. The fundamental quantity on which
the formulation is based is the probability that the model is
correct and accurate once a set of assumptions are made. This
probability will be, in a sense, subjective in that while the model† Part of the special issue “Charles S. Parmenter Festschrift”.
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may have wider applicability; the uncertainty measure is
established only for the class of phenomena of interest. This
viewpoint allows us to select measures of correctness of the
model that reflect our interest. For example, we might say that
accuracy would imply that errors in predicting relative intra-
cellular concentrations of a wide range of orders of magnitudes
(e.g., nanomolar to molar) must be similarly minimized. Our
probabilistic formulation allows us to estimate uncertainties in
all model predictions, and, as we shall show, allows us to
calibrate an incomplete model.

Historically, most calibration problems are formulated as,Ax
) y, wherey is a vector of observed quantities, andx is the
vector of unknown model parameters. For a nonlinear model,
the matrix A usually depends onx. Because the problem is
usually ill-posed,A is ill-conditioned.19 The errorE ) |Ax -
y|2 is a quadratic measure to be minimized with respect tox. A
number of techniques have been used to regularize such systems.
Tikhonov’s approach is a commonly used technique in which
a small regularization parameterq is introduced to modifyE to
|Ax - y|2 + q|x|2. However, the selection ofq significantly
affects the inversion. This technique is equivalent to the
minimization ofE subjected to the constraint|x|2 ) f through
the use of the Lagrange multipliers. Minimization of the
modified error damps the large oscillations in the least-squares
solution. The Levenberg-Marquardt technique uses a full
Newton approach and introduces another regularization param-
eter to the diagonal of the Jacobian matrix.20,21Once again, the
choice of the regularization parameter is difficult, and the usual
practice is to change it as the simulation progresses to minimize
its effect.22,23In practice, multiple regularization techniques can
be employed simultaneously.19 Applications of the regularization
techniques are presented in Player et al.,24 Rao et al.,23 Kytomaa
and Weselake,22 Torres et al.,25 and Mendes and Kell.26 Mendes
and Kell compiled a review of optimization techniques applied
to biological systems. They used the metabolic simulator
GEPASI along with a large number of optimization techniques
(such as steepest descent, truncated Newton, and genetic
algorithm) to estimate five rate constants of the mechanism of
irreversible inhibition of HIV proteinase. In this paper, we
propose several improvements including use of information

theory to construct a probability density function that can be
used to assess the uncertainty in calibrated parameters and
predicted cell behavior, use of different error measures to
improve the optimization technique, development of physically
motivated regularization techniques for problems in which the
least-well-known parameters are functions of space or time (as
this is equivalent to providing new information, in a novel
approach, we impose regularization constraints on the probability
density functions), and use of a consistent approach to weigh
the importance of different error measures.

In this paper, we present results on the implementation of
our algorithm based on Karyote cell model.1,27,28 A partial
Karyote flowchart is seen in Figure 2. Because an extensive
set of processes is accounted for in Karyote, it is the type of
model that is ideally suited for the present approach. These
technical challenges, presentation of our formulation, and
application to the modeling ofTrypanosoma bruceiare presented
herein.

Figure 1. (a) Multiple types and qualities of data are integrated to automatically yield improvements in Karyote as new data becomes available.
(b) Integration of Karyote with a variety of data is used to compute the most probable values of the least well-constrained model parameters via
our information theory method. The method also yields the most probable time course of the concentrations of key chemical species of which the
mechanism of production or degradation are not known. The computation involves execution of a number of Karyote simulations that increase
linearly with the number of parameters to be calibrated and that can be run in parallel. The case for multidimensional spectroscopy is illustrated.

Figure 2. Partial schematic Karyote flowchart showing how DNA
nucleotide sequence data is used in a self-consistent way to generate
cell reaction/transport dynamics by feedback control and coupling of
metabolic, proteomic, and genomic biochemistry.
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B. Information Theory Model/Data Integration

Our information theory formalism is based on the construction
of the probability density for poorly constrained factors. The
three types of factors we account for are as follows: typeA,
discrete parameters (e.g., stoichiometric coefficients specifying
the numbers of each molecular species participating in a reaction
or parameters determining protein sequence/function rules); type
B, continuous parameters (e.g., reaction rate coefficients,
membrane transport parameters, and equilibrium constants that
can reside in a continuous range); typeC, functions (e.g., the
time course of the concentration of chemical species of which
the enzymatic role is known but the mechanism of creation/
destruction is not known).

To estimate the most probable values of factorsA andB and
the time course of factorC, we introduce a method that
surmounts the limitations of regularization techniques used in
other approaches. First, we introduce the probabilityF(Γ), (Γ
) A, B, or C). The entropyS of information theory29 is a
measure of the overall uncertainty that we have about the value
of Γ; it is defined in our formulations28,30 via

In this expression,S implies a sum over the discrete variables
A, an integration over the continuous parametersB, and a
functional integration overC. Normalization of the probability
F[Γ] implies

Experiments are divided intoNe groups labeledk ) 1, 2, ...,
Ne for each of which there is a set of observed data values,
O(k). For example,O(1) could be the time course of a set of
intracellular constituent concentrations as they change in
response to an injected chemical disturbance,O(2) can be the
normal proteome,O(3) can be the proteome of the virally infected
cell, andO(4) can be a set of membrane potentials in a rest state
or as they change in response to an electrode-imposed distur-
bance. Through Karyote, we compute the model predictions,
Ω(k)(Γ), that correspond toO(k). Typically, theseΩ(k) are
indirectly related toΓ. Because Karyote predictions depend on
the choice of the parametersΓ, so doesΩ(k). The choice of the
error measures is discussed in the next section. In general, the
error measureE(k) should vanish as the difference between the
predictions and the observation goes to zero.

The entropy is proposed as a measure of our uncertainty in
the state of the system. Thus, for discrete parameters (typeA)
if Γ is known to be a particular valueΓ0, thenF ) 1 for Γ )
Γ0 and 0 otherwise, implying thatS ) 0. If all values ofΓ are
equally likely, thenS takes on its largest value. Hence, to be
“objective”, F should be determined as the probability that
maximizesS constrained only with the available information.
Thus, we maximizeSsubject to normalization (eq B.2) and the
estimated error in the available data. Among the latter are the
error conditions

Here E(k)* is the average value ofE(k), and it is based on
estimated experimental errors in the data and in the mathematical
and numerical model.

From the physics of a system and from our general experi-
ence, we often know that time-dependent variables change
smoothly on a time interval smaller than some characteristic
time. Because data is often sparse, it is necessary to apply
homogenization constraints on the time dependence of the
continuous variables,C(t). For example, assume that estimates
based on known reactions suggest thatC(t) varies on a second
time scale or longer not, for example, on a nanosecond scale.
Then we impose a constraint on the expected rate of change of
C(t):

for the jth time-dependent parameter,Cj; the value of Xj

represents the value of the square of the rate of change ofCj

averaged over the ensemble and the total timetf of the
experiment.Nt is the number of time-dependent functions to
be estimated. In general, one might need to apply regularization
on the space dependence of some variables,D(rb). Such
constraints eliminate unphysical high-frequency content of the
solution. (e.g., spatial regularization of diffusion coefficient that
is known only at few spatial points). The constraint can be
expressed as

Here Ns is the number of space-dependent functions to be
estimated. Introducing Lagrange multipliersâk, Λj, andΠi, we
find that theF that maximizesS subject to (eqs B.2, B.4, B.5,
and B.6) takes the form

The normalization coefficientQ is given by

By finding Lagrange multipliers (âk, Λj, andΠi), we construct
the most unbiased probability distribution of the model input
parametersΓ.

C. Data Types and Error Measures

The error measuresE(k) of section B are a central element of
our information theory approach. It is our opinion that the choice
of error measure itself can be viewed as a type of information
that can be justifiably folded into the approach. For example,
suppose that from experience it is known that one error measure
is more sensitive to the calibration of a given parameter than
others. Alternatively, one error measure may emphasize one
subset of data (e.g., large values) versus another (e.g., small

S) - S
Γ

F ln F (B.1)

S
Γ

F ) 1 (B.2)

E(k) f 0 as Ω(k) f O(k) (B.3)

S
Γ

FE(k) ) E(k)* (B.4)

S
Γ

F∫0

tf dt
1
2(∂Cj

∂t )2
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S
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F∫Ω
d3r

1
2
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∑
i)1

Ns
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∑
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tf dt(∂Cj/∂t)2 - ∑
k)1

Ne
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ones). Thus, a judiciously chosen error measure can reflect our
knowledge of what is important in assessing the accuracy of
the model.

Cells often can be induced (e.g., by manipulating the culture
medium) to remain in a steady state of substrate uptake and
product expulsion. Let the predicted steady-state concentrations
be denoted by{ci

p; i ) 1, 2, ...,N} for anN-component system,
while the observed values,ci

o, of these quantities are assumed
to be known. Leth(x,y) be a positive function ofx andy. Then
one class of error measure is

The challenge is to choose the form ofh(x,y) that fits certain
criteria that one may have on model accuracy. In our formula-
tion, these criteria are as follows:h is zero whenx ) y and
must be positive otherwise; for fixedy, h must be a monotoni-
cally increasing function ofx as |x - y| increases;h should
reflect any valuation one may have (e.g., all values are equally
important or the larger values are most important).

Specific examples of error measures for concentrations are
as follows:

where σi
o is a weighting factor (e.g., the uncertainty in the

observed data).
The above error measures have different characteristics. In

our studies steady-state concentrations range over several orders
of magnitude that the choice ofh(x,y) ) [ln x - ln y]2 is a
good measure to make use of all measured data. Thus whilex
andy can vary over several orders of magnitudes, this measure
treats all species on a relatively equal footing. Our study
indicates that the simple measure (x - y)2 has rather poor
behavior (see Figure 3a). The steady-state concentrations were
predicted by Karyote forT. brucei cell.27 When the simple
quadratic error measure was used, error was weakly dependent
on the rate coefficient, while the use of eq C.3 resulted in a
well-defined minimum. In this sense, knowledge of the optimal
error measure is a type of information.

D. A Priori Information

Considering the number of model parameters that are poorly
constrained, the above procedure may not be sufficient to
determine them when only a small amount of data is available.
Thus, we suggest approaches that will guarantee solubility
based on qualitative knowledge. First, consider a set of expected
errors F(k), k ) 1, 2, ..., Nx. Associated with one of theNx

expected errors is a group ofNa
(k) model parameters,γ(k) {γ1

(k),
γ2

(k), ..., γNa
(k)

(k) }, for which we have experience. For example, if
they are rate coefficients that we have estimated from experience

with similar reactions to beγ(k), then letF(k) be given by

From a database of similar reactions, one may gather statistical
information, denoting the expected value ofF(k) by F(k)*. We
impose the conditions

This allows one to determine theNx Lagrange multipliers that
are introduced in the entropy maximization. To illustrate the
essence of this approach, consider the following problem with
one type of error. The maximization of entropy subject to
normalization (eq B.2) and error constraint (eqs B.4 and D.2)
yields

where â and λi are Lagrange multipliers. IfF is taken as a
quadratic function, it implies a Gaussian envelope that helps to
stabilize the numerical solution.

E ) ∑
i

h(ci
p,ci

o) (C.1)

E ) ∑
i

|ci
p - ci

o|1/2 (C.2)

E ) ∑
i

(ln ci
p - ln ci

o)2 (C.3)

E ) ∑
i (ci

p - ci
o

ci
o )2

(C.4)

E ) ∑
i (ci

p - ci
o

σi
o )2

(C.5)

Figure 3. Different error measures show different response as a
function of forward transport coefficient for glucose between a
glycosome and the cytosol inT. bruceimodel using Karyote: (a) the
simple error measure (eq C.5) withσi

o ) 1 is biased to large
concentrations; (b) the log-difference error (eq C.3) more equally weighs
the full range of concentration values. It shows a distinct global
minimum.

F(k) ) ∑
i)1

Na
(k)

h(γi
(k),γj i
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S
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i)1

Nx

λiF
(i) (D.3)
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Next, we introduce an “irrelevance” constraint. In this case,
we consider certain parameter values to be irrelevant once they
reach an asymptotic range. For example, consider the reaction

of rate coefficientq and rate lawq(KXY- Z). As q f ∞, then
to lowest orderKXY) Z and the rate becomes independent of
q. To show this, expandX, Y, andZ in a Taylor series inq-1.
After a short transition period, the system evolves to the
equilibrium manifoldQX0Y0 ) Z0, whereX ) X0 + q-1X1, +
.... With this, an error measure will become independent ofq
beyond a crossover value, and hence,F becomes independent
of q in that asymptotic range. LetWl

f and Wl
r be the forward

and reverse rates of thelth reaction. Then as the associated rate
coefficient ql exceeds the crossover,Wl

f ≈ Wl
r. Hence, the

quantity

provides a measure of proximity to the asymptotic limit. If there
are Ncross of theseql (l ) 1, 2, ..., Ncross) then consider the
measure

The explicit qjl/ql term accounts for the fact that the rate
coefficients are not expected to fall too far below typical values,
qjl, and certainly not below zero. Then we impose the constant

whereg is a value of a typicalêl
-2 beyond which crossover is

expected (say 10-3).

E. Numerical Approach

The key to the implementation of our information theory
method is an efficient numerical algorithm for calibrating the
continuous parametersB and the discretized functionsC, which
together constitute a set ofNP parameters denoted (x ) x1, x2,
..., xNP).

1. Single Data Set.For one error type (and associated data
set), the results of section B imply

The most probable parameter values are atFm, the global
maximum ofF. This occurs atEm, the global minimum ofE,
that is, at the solution of

For metabolic kinetic networks, as an illustrative example,
steady-state concentration measurements are used to construct
an error measure. Steady-state probing is crucial to determine
the error response of the model with respect to steady-state
concentrations. The simulation time is essential to determine
the most probable values of the parameters (see Figure 4).

By expandingE around the most probable valuexm of x and
dropping cubic and higher order terms in the deviation from
xm, we get (see Appendix I)

and

hence

Theλi are the eigenvalues ofHij(∂2E/(∂xi∂xj)), the Hessian matrix
of E calculated at the minimumEm of E. E* is the expected
value of the error evaluated from experimental and model
uncertainties. Caution must be used for adopting quadratic
approximation (see Figure 5). Expected values can be found
using the probability distribution and the Hessian matrix of the
output predictionsP(x) calculated at the most probable value
of the parameters.

Also one can calculate the uncertainty in the predictions using
the output response vector and the Hessian matrix of the model
predictionP(x) calculated at the most probable value of the
parameters

Hereγii are the diagonal elements of the transformed Hessian
matrix of P calculated at the minimum ofE. κii ) (∂P/∂xi)2 are
the diagonal elements of the tensor product of the prediction
output response vector,∂P/∂xi, and its transpose calculated at
the minimum ofE.

Figure 4. The error topography of the error measure depends on
simulation time. The longer the simulation time is, the deeper are the
minima that we get for that specific parameter, as expected because
experiments were done at steady-state concentrations.

X + Y f Z (D.4)
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4π(E* - Em)
(E.3)

â )
Np

2(E* - Em)
(E.4)

F(x) ≈ Fm exp{-(1/2)â∆xTH|x)xm
∆x} (E.5)
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(E* - Em)
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Np
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Np κii

λi

+
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2. Multiple Data Sets. Here, we maximize the entropy to
find the probability of the model parametersS[F] with respect
to F(x) and subject to normalization and eq B.4. Introducing
Lagrange multipliers,-ln Q, andâk, we maximize the auxiliary
function to obtain

As in the single error measure case, we find the most probable
value ofx by minimizing the total error ofET

subject to normalization and error constraints (eq B.4). We thus
solveNp + Ne + 1 equations

and

Using a Metropolis-Monte Carlo algorithm to evaluate eqs E.11
and E.12, one needs thousands of model runs to evaluate each
integral. However, with the use of a quadratic truncation ofE,
the computational time is reduced dramatically. This allows us
to compute these integrals analytically as a function ofâ. By
doing so, we get (see Appendix II)

and

whereÌr ) Gr∇E|x)xr, θr ) Gr
TJr

(k)Gr, Gr are the eigenvectors
of the total error (eq E.9) Hessian matrix evaluated atx ) xr,
andJr

(k) is the Hessian matrix of thekth error type.
Denote eqs E.10 and E.11 by{fi, i ) 1, 2, ...,Np, Np + 1, ...,

Np + Ne} andâ by xNp+1, ...,xNp+Ne. The firstNp equations follow
from error minimization, while the remainder follow from the
error constraints. Note that we do not need to solve forQ
because we impose normalization on eq E.12 to get an
approximate normalization constant. The above system of
nonlinear equations can be written as

We solve eq E.15 using the Newton-Raphson method
starting with an initial guess and constructing the Jacobian
matrix, which represents the sensitivity of the equations to
changes in the variables. The evaluation of the Jacobian matrix
and the error minimization equations cannot be obtained
analytically for the complex reaction/transport systems of interest
here. While automated differentiated methods (ADIFOR) can
be used to develop accurate expressions, such an approach is
memory intensive and not easily parallelized. However, a
forward difference scheme is found to be easily coded and
parallelized. We have implemented a finite-parameter perturba-
tion method to calculate the error response and the Jacobian
(for one error type) as follows:

and

in which êi is a unit vector in theith direction andhi is a small
perturbation. For multiple error types, the above will be the
upper right part of the Jacobian; the rest can be calculated in
the same way by perturbing the Lagrange multipliers. The
number of model runs needed to calculate the Jacobian is (Np

+ 1) + Np(Np + 1)/2. This can be reduced to (Np + 1) if one
uses Newton-Gauss or a steepest descent gradient scheme. One
can use a hybrid method (e.g., starting with a steepest descent
scheme and after a few iterations applying Newton-Raphson
or Newton-Gauss (to get a quadratic convergence). Once the
Jacobian is constructed, we solve

and

hereJij ) ∂fi/∂xj for Newton-Raphson method;J for Newton-
Gauss is obtained by dropping of predictions’ second derivatives
terms in the Newton-Raphson Jacobian.ω is obtained using a
line search along the direction of Newton-Raphson or Newton-
Gauss direction. We update the solution by iteratively applying
this procedure until the elements off become smaller than a
prescribed tolerance. For insufficient or poor quality data or a
poor choice of error measure, the scheme will not converge as
expected. In summary, this iterative procedure is much more

Figure 5. The dashed curve is a Gaussian approximation to the
probability distribution constructed using a quadratic expansion of ln
F around the most probable value. While agreement is good in this
case, the Gaussian approximation is not always appropriate.
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∂E
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efficient than Monte Carlo methods because one solves for the
most probable value of the model parameters directly. The
algorithm is parallelizable because the many simulations of the
model that are required can be run simultaneously; the number
of simulations required scales linearly with the number of
parameters to be determined for a Newton-Gauss optimization
technique.

3. Time Regularization Constraints. We now give more
details on our strategy for probability functional calculations.
We return to problems involving the three types of factors to
be calibratedΓ ) (A,B,C) as in section B. Introducing Lagrange
multipliersâk andΛj, we find that theF that maximizesSsubject
to constraints (eqs B.2, B.4, and B.5) takes the form

The factor Q is a constant to be determined by imposing
normalization (eq B.2). The most probable value ofΓ is that
which maximizesF. For typeA parameters, this follows from
a discrete search; forB ) (B1, B2, ..., BNb) andC ) (C1, C2, ...,
CNt), one must solve

and

This is a functional differential equation that has similarities in
its behavior to a steady-state diffusion equation in the time
dimensiont. The functional derivativesδE(k)/δCj measure the
degree to whichE(k) changes when the form of the function
Cj(t) changes by an infinitesimal amount. As theΛ-parameters
get larger,C becomes a smoother function of time. The values
of theâ andΛ parameters are determined in our procedure via
imposition of the conditions eqs B.4 and B.5. We solve the
above equations for the most probable values ofA, B, andC
numerically. We use a finite difference scheme so that the
homogenization constraints take the form

Equation E.22 can be written as

where∆t is the spacing between the discretized values ofCj

andNj is the number of discretization intervals for speciesj. A
Newton-Raphson method is used for solving the coupled
equations (E.21, E.24).

A simple reaction model illustrates this approach. The
model involves three species, X, Y, and C, which are taken

to participate in the reactions

While all the reactions affecting X and Y are assumed to be
known, those affecting the catalyst C are not. Consider now
the challenge of determining the time course of the catalyst
concentration,C(t), given limited or noisy data onX(t) at a set
of discrete times, given thatC is known att ) 0 and the final
time tf (5 min). We assumed

and then generatedX(t) via the numerical solution of the mass
action rate laws for the mechanism (eq E.25); this was taken as
the observed data, and various levels of noise were added to
evaluate the effect of uncertainty in the data. Figure 6 shows a
comparison of results for various levels of noise in the
experimental data. Even when there is a large amount of data,
solution without regularization is vulnerable to noise in the
experimental data. The physically motivated homogenization

ln F ) -ln Q -
1

2
∑
j)1

Nt

Λj∫0

tf dt (∂Cj/∂t)2 - ∑
k)1

Ne

âkE
(k)(Γ) (E.20)

∑
k)1

Ne

âk

∂E(k)

∂Bj

) 0, j ) 1, 2, ...,Nb (E.21)

Λj

∂
2Cj

∂t2
+ ∑

k)1

Ne

âk

δE(k)

δCj

) 0, j ) 1, 2, ...,Nt (E.22)

1

2
∫0

tfdt (∂Cj/∂t)2 )
1

2
∑

i
(Cj,i+1 - Cj,i

∆t )2

∆t (E.23)

∆tΛj

Cj,i+1 - 2Cj,i + Cj,i-1

∆t2
+ ∑

k)1

Ne

âk

∂E(k)

∂Cj,i

) 0,

j ) 1, 2, ...,Nt i ) 1, 2, ...,Nj (E.24)

Figure 6. (a) Comparison of the time course ofC(t) as known (bold)
and predicted with and without regularization (dashed and solid line).
To the 41 data points used, a random error of 0.3% was added to
determine the effect of experimental data uncertainty on the evaluation
of C(t). In the absence of regularization, the high-frequency oscillations
are unacceptably large. (b) Even when the level of noise is increased
significantly (2% and 3% for thin solid and dashed lines, respectively),
we obtain satisfactory results.

X + Y f 2X

2X f products

2Y f products

C + X f products

C + Y f 2Y (E.25)

C(t) ) e-|sin(ωt)| (E.26)
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(eq B.5) increases the allowable noise in the experimental data
by an order of magnitude. Because this method is based on an
objective probability analysis, it provides an estimate of
uncertainty in the predictions (e.g., see Figure 7). The above
approach yields accurate results even with limited and noisy
data, a situation typical for data on cellular and other complex
systems. Imposing small values of (variable name of eq B.5)
decreases the oscillatory behavior ofC and narrows the
probability distribution as well. Therefore, if a species is known
to have a smooth time course, use of this information via eq
B.5 leads to a narrow probability distribution ofC.

F. Application to T. brucei

An extensive study ofT. brucei was done by Visser and
Opperdoes.31 Steady-state concentrations of different metabolites
were measured using a variety of analytical techniques such as
high-pressure liquid and ion-exchange chromatography. Elec-
trophoresis is used for protein and enzyme concentrations.
Bakker et al.32 and Navid and Ortoleva27 studiedT. brucei
glycolysis. Navid and Ortoleva simulated glycolysis using a
metabolic network that consists of 28 fast (equilibrium) and 11
slow reactions. The system consists of 59 chemical species in
three compartments (mitochondrion, glycosome, and cytoplasm).
In Karyote, the dynamics of the metabolite concentrations are
obtained by solving1

where ARR′ is the shared boundary surface area separating
compartmentsR andR′, Ji

RR′ is the net flux of speciesi from R
to R′, ci

R is the concentration of speciesi in compartmentR, Nc,
Ns, andNf are the number of compartments, chemical species,
and fast reactions, respectively,Ri

R,slow is the net reaction rate
for slow reactions involved with chemical speciesj in compart-
mentR, VR is the volume of compartmentR, Wk

R,fast is the rate
of reaction k in compartmentR, νik

fast is the stoichiometric
coefficient for speciesi in reactionk in compartmentR, andε

is the ratio of the short to long characteristic time.
We calibrate the parameters listed in Table 1 with available

experimental steady-state concentrations. As seen in Tables 1
and 2, the values of the parameters developed by our procedure
give lower error than those obtained by Navid and Ortoleva,
which themselves give a lower error than those of Bakker
et al.

G. Conclusions

The overall goal of this work is to develop a natural
integration of modeling and laboratory approaches. Because
there are uncertainties in both, the natural framework for this
integration is information theory (i.e., probability theory). We
have established the relationship between the completeness of
the model and of the experimental data set. For example, an
extensive data set can be used to establish relationships among
variables that are not included in the physics and chemistry of
the model; thus while reaction mechanism for the creation/
destruction of one chemical species may not be known, our
formulation shows how experimental data can be used to
construct the most probable time course of concentration of this
species.

The information theory framework allows for the inclusion
of qualitative data/physical intuition (i.e., soft data) in a variety
of ways. Experience gained in determining the most sensitive
error measure for given types of model parameters and of data
can be considered as information that is naturally integrated in
our formulation. Qualitative information such as upper and lower
limits on the time scale of processes can be naturally introduced
via our regularization approach. The numerical computations
can be stabilized by incorporating our knowledge of asymptotic
behavior of the reaction system (e.g., when the rate coefficient
for a reversible reaction is beyond a certain value, then that
reaction is at equilibrium, and therefore, predictions of the
model become insensitive to the value of parameter used).
Finally, experience gained on reaction mechanisms analogous
to those in the model of interest can be used to guide the
structure of the probability distribution via an a priori informa-
tion approach.

Figure 7. The rms deviation ofC(t) (dashed lines) showing the
uncertainty of the results when the expected error is 0.01.

TABLE 1: List of Parameters Calibrated for the T. brucei Glycolysis Modela

parameter type reaction initial estimate calibrated value

slow reaction rate coefficient hexokinase 0.0658 (s-1) 0.0872 (s-1)
slow reaction rate coefficient glycerol-3-phosphate dehydrogenase 0.0395 (s-1) 0.9040 (s-1)
slow reaction rate coefficient GAP dehydrogenase 57.90 (s-1) 81.470 (s-1)
slow reaction rate coefficient GAP dehydrogenase 57.90 (s-1) 25.150 (s-1)
slow reaction rate coefficient phosphofructokinase 0.321 (s-1) 0.0912 (s-1)
slow reaction rate coefficient phosphoglycerate kinase 0.125 (s-1) 0.0263 (s-1)
slow reaction rate coefficient pyruvate kinase 0.0743 (s-1) 2.205 (s-1)
slow reaction rate coefficient glycerol kinase 1.00 (s-1) 0.109 (s-1)
fast reaction equilibrium constant phosphoglycerate mutase 0.187 (s-1) 0.128 (s-1)
fast reaction equilibrium constant enolase 6.70 (s-1) 1.511 (s-1)
forward transport coefficient glycerol-3-phosphate 4× 10-5 (L-1‚s-1) 4.001× 10-5 (L-1‚s-1)
forward transport coefficient pyruvate 7× 10-9 (L-1‚s-1) 4.8× 10-9 (L-1‚s-1)
forward transport coefficient dihydroxy-acetone-phosphate 1× 10-5 (L-1‚s-1) 9.76× 10-6 (L-1‚s-1)

a Fast reactions are considered to be at equilibrium; thus, only the equilibrium constants were calibrated. For slow (finite rate) reactions, rate
coefficients were calibrated.

VR
dci

R

dt
) ∑

R′*R

Nc

ARR′Ji
RR′ + VRRi

p,slow + VR∑
k)1

Nf

νik
fast

Wk
R,fast

ε
,

i ) 1, 2,..., Ns (F.1)
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Our methodology allows for the construction of the full
probability distribution. However, these computations can be
carried out most efficiently when a Gaussian approximation is
used to construct the probability density for the least known
factors. This probability in the Gaussian approximation can be
used to calculate the probability distribution for model predic-
tions, the latter not necessarily Gaussian even though the former
was. As a model, prediction is in general a complex nonlinear
function of the unknown parameters.

The methodology allows for the objective integration of
multiple data sets of various types and quality (e.g., NMR, mass
spectroscopy, microelectrode). To take full advantage of such
a spectrum of data, a model of a complex system, like a cell,
must be sufficiently comprehensive to utilize a broad range of
data types. For example, the model should be based on a large
network of metabolic reactions to use data on small molecules
and should have proteomic and genomic components to use
mass spectroscopy data on tryptic digest of proteins. A key link
in the utilization of a variety of experimental data types is the
development of modules that transform the output of the model
(concentrations of chemical species, populations of various
proteins) into the experimentally measured quantities (e.g., NMR
and mass spectroscopy). Thus the development of the physical
models and numerical algorithms needed for the translation
modules is an important next step in the development of our
approach.
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Appendix I. One Error Type Approximation

Entropy maximization for one error type yields

whereQ is a normalization factor andâ is a Lagrange multiplier.
We expand lnF around the most probable values of the

parameters setxm. Clearly xm is maximizing the probability
distribution because lnF is a monotonic function ofF.

Define

hence,

This approximation is always valid when we have a narrow
probability distribution where the quadratic term is the dominant
factor. For multimodal probability distribution, when one of the
maxima is much larger than the others, it is legitimate to ignore
the latter. This allows us to give a complete description of the
probability using few parameters (i.e., averages and variances).
However, the idea of best estimate and confidence intervals
would be irrelevant when the multimodal probability density
has comparable maxima.

Now, we have

Normalization implies

Spectral decomposition of the error Hessian matrix (HE) implies

Because the Hessian matrix of the error is positive definite
aroundxm, one can evaluate the quadratic integration in eq I.4
analytically. By doing so, we find

TABLE 2: Comparison of Calculated and Measured Steady-State Metabolite Concentrations for Glycolysis under Aerobic
Conditions in T. bruceia

Karyote
Bakker et al.

species

exptl concn
(aerobic)

(mM)

concn
(aerobic)
(mM)b

%
errorb

calibrated
concn

(aerobic)
(mM)

%
error

concn
(aerobic)

(mM)
%

error

G6P 4.4 1.0 77 4.40 0 0.44 90
FBP 2.4 0.55 77 2.41 1 0.13 95
F6P 1.9 1.4 26 1.93 2 26 1268
GAP 0.47 0.25 46 0.28 40 0.074 84
DHAP(g/c) 2.6 3.8 46 4.26 64 1.6 38
1-3-BPG 0.77 0.2 74 0.74 4 0.028 96
3PG(g/c) 4.8 1.7 65 4.98 4 0.68 86
2PG 0.59 0.3 49 0.60 2 0.13 78
PEP 0.85 2.0 135 0.91 7 0.85 0
pyruvate 21 21.6 3 20.7 1 21 0
nGly-3-P(g/c) 2 0.4 80 1.68 16 1.1 45

a In column two are the measured concentrations by Visser and Opperdoes.31 In column three are the results for Karyote simulation of the same
system. In column seven are the results of a similar simulation by Bakker et al.32 Karyote’s results have smaller average margins of error in
comparison to Bakker’s results. Improvement due to the use of Karyote is seen by comparing column three and seven. Improvement due to a better
calibration is seen by comparing column three and five. The designations g and c denote glycosomal and cytosolic concentrations, respectively.
b Navid and Ortoleva, 2002.
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whereNp is the number of model parameters.â is evaluated
using the error constraint (eq B.4) and the quadratic expansion
of E. With the use of the transformation∆x ) GTs, the
constraint integral

can be transformed to

Evaluating the above integral yields

And hence, we get

Substitutingâ from eq I.11 into eq I.7 yields

Similarly we can calculate the expected value of a model
predictable outputP to be

whereγii are the diagonal elements of the transformedP Hessian
matrix γ ) GTHPG. Em is the error evaluated atxm. The
uncertainty in the predictions can be deduced from the prob-
ability distribution of the input parameters. We expand a
predictable quantityP around the most probable values of model
parameters. Taylor expansion ofP gives

and

Now,

can be approximated by

whereK ) G∇P∇PTGT.

With use of eqs I.13 and I.17, the uncertaintyσP
2 ) 〈P(x)2〉

- 〈P(x)〉2 in a model predictionP is found to be

Appendix II. Multiple Error Types Approximation

For multiple error types, we need to solve the highly nonlinear
constraints equations

whereNe is the number of error types andQ is the partition
function for multiple error types, which can be evaluated by

Denote the integration over parameters space by〈 〉; then the
Jacobian of the above nonlinear system (eq II.1) is found to be

which reduces to

or

Now, consider an arbitraryâ * 0,

which implies

that is, the Jacobian of the nonlinear system eq II.1 is positive
definite. This is a necessary condition for having a unique
solution of eq II.1. Another necessary condition for having a
solution is

However, the above nonlinear system and the Jacobian evalu-
ations are computationally expensive. Using Monte Carlo
methods to calculate the partition functionQ needs thousands
of model runs. If quadratic terms are dominant in the error
functions, then a Gaussian approach for the probability distribu-
tion can be taken as follows.

DenoteE ) ∑k)1
Ne â(k)E(k); then the quadratic expansion of ln

F around a reference pointxr yields

∫{Em + 1
2
∆xTHE∆x}F(x) dx ≈ E* (I.8)
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where

and

Substituting eq II.8 into normalization, we get

The spectral decomposition ofE Hessian matrixJ implies

and

We transform the integration variables using

and

Equation II.12 then becomes

which can be simplified to

Therefore

One can use the partition functionQ to approximate the
constraints (eq II.1) and the Jacobian (eq II.4) using a forward
difference scheme. Similarly, we can expandE(k)(x) aroundxr,

Substituting in eq B.4, we get

This reduces to

Now let θr ) Gr
T Jr

(k)Gr; then the preceding becomes

which reduces to

that is,

which is an equivalent approximation to eq II.1.
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